### INTEGRATED CIRCUITS

# DATA SHEET

**74LVT16245B**3.3 V LVT 16-bit transceiver (3-State)

Product data Supersedes data of 1998 Feb 19





### 3.3 V LVT 16-bit transceiver (3-State)

### 74LVT16245B

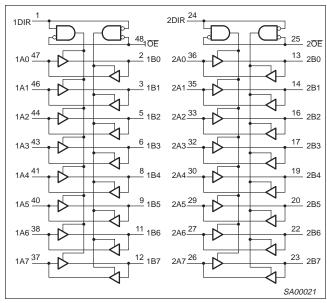
#### **FEATURES**

- 16-bit bidirectional bus interface
- 3-State buffers
- Output capability: +64 mA / -32 mA
- TTL input and output switching levels
- Input and output interface capability to systems at 5 V supply
- Bus-hold data inputs eliminate the need for external pull-up resistors to hold unused inputs
- Live insertion/extraction permitted
- Power-up 3-State
- No bus current loading when output is tied to 5 V bus
- Latch-up protection exceeds 500 mA per JEDEC Std 17
- ESD protection exceeds 2000 V per MIL STD 883 Method 3015 and 200 V per Machine Model

#### **DESCRIPTION**

The 74LVT16245B is a high-performance BiCMOS product designed for  $V_{CC}$  operation at 3.3 V.

This device is a 16-bit transceiver featuring non-inverting 3-State bus compatible outputs in both send and receive directions. The control function implementation minimizes external timing requirements. The device features an Output Enable ( $\overline{OE}$ ) input for easy cascading and a Direction (DIR) input for direction control.


#### **QUICK REFERENCE DATA**

| SYMBOL                               | PARAMETER                                     | CONDITIONS<br>T <sub>amb</sub> = 25 °C             | TYPICAL | UNIT |
|--------------------------------------|-----------------------------------------------|----------------------------------------------------|---------|------|
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation delay<br>nAx to nBx or nBx to nAx | $C_L = 50 \text{ pF};$<br>$V_{CC} = 3.3 \text{ V}$ | 1.9     | ns   |
| C <sub>IN</sub>                      | Input capacitance DIR, OE                     | V <sub>I</sub> = 0 V or 3.0 V                      | 3       | pF   |
| C <sub>I/O</sub>                     | I/O pin capacitance                           | V <sub>I/O</sub> = 0 V or 3.0 V                    | 9       | pF   |
| I <sub>CCZ</sub>                     | Total supply current                          | Outputs disabled; V <sub>CC</sub> = 3.6 V          | 70      | μΑ   |

#### ORDERING INFORMATION

| TYPE NUMBER    | PACKAGE                      | TEMPERATURE RANGE | DWG NUMBER |
|----------------|------------------------------|-------------------|------------|
| 74LVT16245BDL  | 48-Pin Plastic SSOP Type III | −40 °C to +85 °C  | SOT370-1   |
| 74LVT16245BDGG | 48-Pin Plastic TSSOP Type II | –40 °C to +85 °C  | SOT362-1   |
| 74LVT16245BEV  | 56VFBGA Ball Grid Array      | −40 °C to +85 °C  | SOT702-1   |

#### LOGIC SYMBOL




#### NOTE:

Pin numbers are shown for SSOP and TSSOP packages only.

### 3.3 V LVT 16-bit transceiver (3-State)

### 74LVT16245B

#### LOGIC SYMBOL (IEEE/IEC)



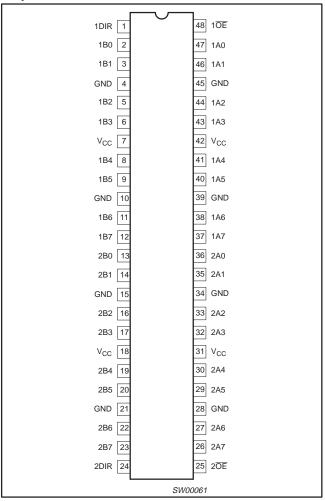
#### NOTE:

Pin numbers are shown for SSOP and TSSOP packages only.

#### **FUNCTION TABLE**

| INP | UTS  | INPUTS/OUTPUTS |           |  |  |  |
|-----|------|----------------|-----------|--|--|--|
| nOE | nDIR | nAx            | nBx       |  |  |  |
| L   | L    | nAx = nBx      | Inputs    |  |  |  |
| L   | L H  |                | nBx = nAx |  |  |  |
| Н   | Х    | Z              | Z         |  |  |  |

H = High voltage level


L = Low voltage level

X = Don't care

Z = High Impedance "off" state

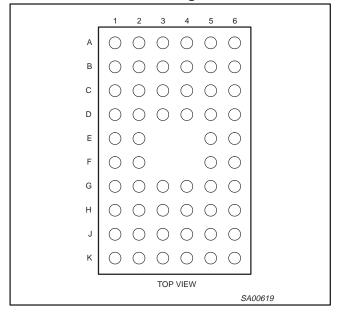
#### **PIN CONFIGURATION**

#### 48-pin SSOP and TSSOP



#### **PIN DESCRIPTION**

### 48-pin SSOP and TSSOP


| PIN NUMBER                                                              | SYMBOL          | NAME AND FUNCTION                |
|-------------------------------------------------------------------------|-----------------|----------------------------------|
| 1, 24                                                                   | nDIR            | Direction control input          |
| 47, 46, 44, 43,<br>41, 40, 38, 37,<br>36, 35, 33, 32,<br>30, 29, 27, 26 | nA0 – nA7       | Data inputs/outputs (A side)     |
| 2, 3, 5, 6, 8, 9,<br>11, 12, 13, 14,<br>16, 17, 19, 20,<br>22, 23       | nB0 – nB7       | Data inputs/outputs (B side)     |
| 25, 48                                                                  | nŌĒ             | Output enable input (active-Low) |
| 4, 10, 15, 21, 28,<br>34, 39, 45                                        | GND             | Ground (0V)                      |
| 7, 18, 31, 42                                                           | V <sub>CC</sub> | Positive supply voltage          |

### 3.3 V LVT 16-bit transceiver (3-State)

### 74LVT16245B

#### **PIN CONFIGURATION**

#### 56-ball VFBGA terminal assignments



#### **PIN DESCRIPTION**

#### 56-ball VFBGA terminal assignments

|   | 1    | 2   | 3               | 4               | 5   | 6               |
|---|------|-----|-----------------|-----------------|-----|-----------------|
| А | 1DIR | NC  | NC              | NC              | NC  | 1 <del>OE</del> |
| В | 1B1  | 1B0 | GND             | GND             | 1A0 | 1A1             |
| С | 1B3  | 1B2 | V <sub>CC</sub> | V <sub>CC</sub> | 1A2 | 1A3             |
| D | 1B5  | 1B4 | GND             | GND             | 1A4 | 1A5             |
| E | 1B7  | 1B6 |                 |                 | 1A6 | 1A7             |
| F | 2B0  | 2B1 |                 |                 | 2A1 | 2A0             |
| G | 2B2  | 2B3 | GND             | GND             | 2A3 | 2A2             |
| Н | 2B4  | 2B5 | V <sub>CC</sub> | V <sub>CC</sub> | 2A5 | 2A4             |
| J | 2B6  | 2B7 | GND             | GND             | 2A7 | 2A6             |
| К | 2DIR | NC  | NC              | NC              | NC  | 2 <del>OE</del> |

### 3.3 V LVT 16-bit transceiver (3-State)

74LVT16245B

#### **ABSOLUTE MAXIMUM RATINGS**<sup>1,2</sup>

| SYMBOL           | PARAMETER                      | CONDITIONS                  | RATING       | UNIT |
|------------------|--------------------------------|-----------------------------|--------------|------|
| V <sub>CC</sub>  | DC supply voltage              |                             | -0.5 to +4.6 | V    |
| I <sub>IK</sub>  | DC input diode current         | V <sub>I</sub> < 0          | -50          | mA   |
| VI               | DC input voltage <sup>3</sup>  |                             | -0.5 to +7.0 | V    |
| lok              | DC output diode current        | V <sub>O</sub> < 0          | -50          | mA   |
| V <sub>OUT</sub> | DC output voltage <sup>3</sup> | Output in OFF or HIGH state | -0.5 to +7.0 | V    |
|                  | DC output ourrent              | Output in LOW state         | 128          | A    |
| lout             | DC output current              | Output in HIGH state        | -64          | mA   |
| T <sub>stg</sub> | Storage temperature range      |                             | -65 to +150  | °C   |

#### NOTES:

#### **RECOMMENDED OPERATING CONDITIONS**

| SYMBOL           | PARAMETER  DC supply voltage  Input voltage  HIGH-level input voltage  Input voltage  HIGH-level output current | LIP | UNIT |        |
|------------------|-----------------------------------------------------------------------------------------------------------------|-----|------|--------|
| STWIBUL          | PARAMETER                                                                                                       | MIN | MAX  | T UNIT |
| V <sub>CC</sub>  | DC supply voltage                                                                                               | 2.7 | 3.6  | V      |
| VI               | Input voltage                                                                                                   | 0   | 5.5  | V      |
| V <sub>IH</sub>  | HIGH-level input voltage                                                                                        | 2.0 |      | V      |
| V <sub>IL</sub>  | Input voltage                                                                                                   |     | 0.8  | V      |
| I <sub>OH</sub>  | HIGH-level output current                                                                                       |     | -32  | mA     |
| I <sub>OL</sub>  | LOW-level output current                                                                                        |     | 32   | mA     |
|                  | LOW-level output current; current duty cycle ≤ 50%; f ≥ 1 kHz                                                   |     | 64   | 7      |
| Δt/Δν            | Input transition rise or fall rate; Outputs enabled                                                             |     | 10   | ns/V   |
| T <sub>amb</sub> | Operating free-air temperature range                                                                            | -40 | +85  | °C     |

Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the
device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to
absolute-maximum-rated conditions for extended periods may affect device reliability.

The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed 150 °C.

<sup>3.</sup> The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.

### 3.3 V LVT 16-bit transceiver (3-State)

### 74LVT16245B

#### DC ELECTRICAL CHARACTERISTICS

|                    |                                                                                |                                                                                                                     |                                      |                      | LIMITS           |            |    |
|--------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------|------------------|------------|----|
| SYMBOL             | PARAMETER                                                                      | TEST CONDITIONS                                                                                                     | Temp = -                             | UNIT                 |                  |            |    |
|                    |                                                                                |                                                                                                                     |                                      | MIN                  | TYP <sup>1</sup> | MAX        |    |
| V <sub>IK</sub>    | Input clamp voltage                                                            | $V_{CC} = 2.7 \text{ V; } I_{IK} = -18 \text{ mA}$                                                                  |                                      | -0.85                | -1.2             | V          |    |
|                    |                                                                                | $V_{CC} = 2.7 \text{ V to } 3.6 \text{ V; } I_{OH} = -100 \mu\text{A}$                                              |                                      | V <sub>CC</sub> -0.2 | V <sub>CC</sub>  |            |    |
| $V_{OH}$           | High-level output voltage                                                      | $V_{CC} = 2.7 \text{ V; } I_{OH} = -8 \text{ mA}$                                                                   |                                      | 2.4                  | 2.5              |            | V  |
|                    |                                                                                | V <sub>CC</sub> = 3.0 V; I <sub>OH</sub> = -32 mA                                                                   |                                      | 2.0                  | 2.3              |            |    |
|                    |                                                                                | $V_{CC} = 2.7 \text{ V}; I_{OL} = 100 \mu\text{A}$                                                                  |                                      |                      | 0.07             | 0.2        |    |
|                    |                                                                                | V <sub>CC</sub> = 2.7 V; I <sub>OL</sub> = 24 mA                                                                    |                                      |                      | 0.3              | 0.5        |    |
| $V_{OL}$           | Low-level output voltage                                                       | V <sub>CC</sub> = 3.0 V; I <sub>OL</sub> = 16 mA                                                                    |                                      |                      | 0.25             | 0.4        | V  |
|                    |                                                                                | V <sub>CC</sub> = 3.0 V; I <sub>OL</sub> = 32 mA                                                                    |                                      |                      | 0.3              | 0.5        |    |
|                    |                                                                                | V <sub>CC</sub> = 3.0 V; I <sub>OL</sub> = 64 mA                                                                    |                                      |                      | 0.4              | 0.55       |    |
|                    |                                                                                | $V_{CC} = 3.6 \text{ V}; V_I = V_{CC} \text{ or GND}$                                                               | Operatoral refere                    |                      | 0.1              | ±1         |    |
|                    |                                                                                | $V_{CC} = 0 \text{ V or } 3.6 \text{ V; } V_{I} = 5.5 \text{ V}$ $V_{CC} = 3.6 \text{ V; } V_{I} = 5.5 \text{ V}$   |                                      |                      | 0.1              | 10         | μΑ |
| II                 | Input leakage current                                                          |                                                                                                                     |                                      |                      | 0.1              | 20         |    |
|                    |                                                                                | V <sub>CC</sub> = 3.6 V; V <sub>I</sub> = V <sub>CC</sub>                                                           | I/O Data pins <sup>4</sup>           |                      | 0.5              | 10         |    |
|                    |                                                                                | $V_{CC} = 3.6 \text{ V}; V_I = 0$                                                                                   |                                      |                      | 0.1              | <b>-</b> 5 |    |
| I <sub>OFF</sub>   | Output off current                                                             | $V_{CC} = 0 \text{ V}; V_{I} \text{ or } V_{O} = 0 \text{ V to } 4.5 \text{ V}$                                     |                                      |                      | 0.1              | ±100       | μΑ |
|                    |                                                                                | V <sub>CC</sub> = 3 V; V <sub>I</sub> = 0.8 V                                                                       |                                      | 75                   | 135              |            |    |
| $I_{HOLD}$         | Bus Hold current<br>A or B outputs <sup>6</sup>                                | V <sub>CC</sub> = 3 V; V <sub>I</sub> = 2.0 V                                                                       |                                      | <del>-</del> 75      | -135             |            | μΑ |
|                    |                                                                                | $V_{CC} = 0 \text{ V to } 3.6 \text{ V}; V_{CC} = 3.6 \text{ V}$                                                    |                                      | ±500                 |                  |            |    |
| $I_{EX}$           | Current into an output in the High state when V <sub>O</sub> > V <sub>CC</sub> | V <sub>O</sub> = 5.5 V; V <sub>CC</sub> = 3.0 V                                                                     |                                      |                      | 75               | 125        | μА |
| I <sub>PU/PD</sub> | Power up/down 3-State output current <sup>3</sup>                              | $V_{CC} \le 1.2 \text{ V}; V_O = 0.5 \text{ V to } V_{CC}; V_I = GN$<br>OE/OE = Don't care                          |                                      | 40                   | ±100             | μА         |    |
| I <sub>CCH</sub>   |                                                                                | $V_{CC} = 3.6 \text{ V}$ ; Outputs HIGH, $V_I = \text{GND}$ of                                                      |                                      | 0.07                 | 0.12             |            |    |
| I <sub>CCL</sub>   | Quiescent supply current                                                       | $V_{CC} = 3.6 \text{ V}$ ; Outputs LOW, $V_I = \text{GND or}$                                                       | V <sub>CC</sub> , I <sub>O</sub> = 0 |                      | 4.7              | 6          | mA |
| I <sub>CCZ</sub>   |                                                                                | $V_{CC} = 3.6 \text{ V}$ ; Outputs Disabled; $V_I = GNE$                                                            | O or $V_{CC}$ , $I_{O} = 0^5$        |                      | 0.07             | 0.12       |    |
| Δl <sub>CC</sub>   | Additional supply current per input pin <sup>2</sup>                           | $V_{CC} = 3 \text{ V to } 3.6 \text{ V; One input at } V_{CC} - 0.6 \text{ Other inputs at } V_{CC} \text{ or GND}$ | 6 V,                                 |                      | 0.1              | 0.2        | mA |

- NOTES:
   All typical values are at V<sub>CC</sub> = 3.3 V and T<sub>amb</sub> = 25 °C.
   This is the increase in supply current for each input at the specified voltage level other than V<sub>CC</sub> or GND
   This parameter is valid for any V<sub>CC</sub> between 0 V and 1.2 V with a transition time of up to 10 msec.
   From V<sub>CC</sub> = 1.2 V to V<sub>CC</sub> = 3.3 V ± 0.3 V a transition time of 100 µsec is permitted. This parameter is valid for T<sub>amb</sub> = 25 °C only.
   Unused pins at V<sub>CC</sub> or GND.
   I<sub>CCZ</sub> is measured with outputs pulled to V<sub>CC</sub> or GND.
   This is the hus-hold overdrive current required to force the input to the opposite logic state.

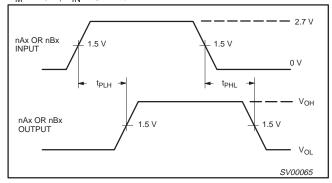
- 6. This is the bus-hold overdrive current required to force the input to the opposite logic state.

## 3.3 V LVT 16-bit transceiver (3-State)

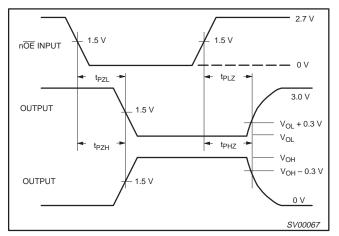
### 74LVT16245B

#### **AC CHARACTERISTICS**

GND = 0 V;  $t_R$  =  $t_F$  = 2.5 ns;  $C_L$  = 50 pF;  $R_L$  = 500  $\Omega$ ;  $T_{amb}$  = –40 °C to +85 °C.


|                                      |                                                |          |            | LIMITS           |            |                         |      |  |  |
|--------------------------------------|------------------------------------------------|----------|------------|------------------|------------|-------------------------|------|--|--|
| SYMBOL                               | PARAMETER                                      | WAVEFORM | Vcc        | = 3.3 V +0       | .3 V       | V <sub>CC</sub> = 2.7 V | UNIT |  |  |
|                                      |                                                |          | MIN        | TYP <sup>1</sup> | MAX        | MAX                     |      |  |  |
| t <sub>PLH</sub><br>t <sub>PHL</sub> | Propagation delay<br>nAx to nBx or nBx to nAx  | 1        | 1.0<br>1.0 | 1.9<br>1.7       | 3.3<br>3.3 | 3.5<br>3.5              | ns   |  |  |
| t <sub>PZH</sub><br>t <sub>PZL</sub> | Output enable time<br>to HIGH and LOW level    | 2        | 1.0<br>1.0 | 2.8<br>2.8       | 4.5<br>4.1 | 5.3<br>5.1              | ns   |  |  |
| t <sub>PHZ</sub>                     | Output disable time<br>from HIGH and LOW Level | 2        | 1.5<br>1.5 | 3.2<br>3.0       | 5.1<br>4.6 | 5.7<br>4.6              | ns   |  |  |

#### NOTE:

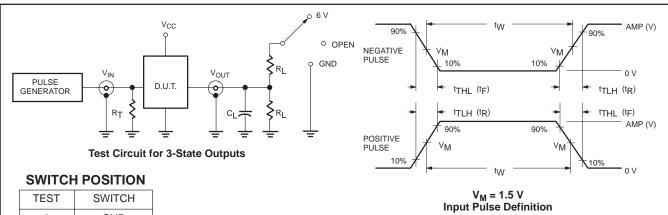

1. All typical values are at  $V_{CC}$  = 3.3 V and  $T_{amb}$  = 25  $^{\circ}C.$ 

#### **AC WAVEFORMS**

 $V_M = 1.5 \text{ V}$ ;  $V_{IN} = \text{GND to } 2.7 \text{ V}$ .



**Waveform 1. Input to Output Propagation Delays** 




Waveform 2. 3-State Output Enable and Disable Times

### 3.3 V LVT 16-bit transceiver (3-State)

### 74LVT16245B

#### **TEST CIRCUIT AND WAVEFORMS**



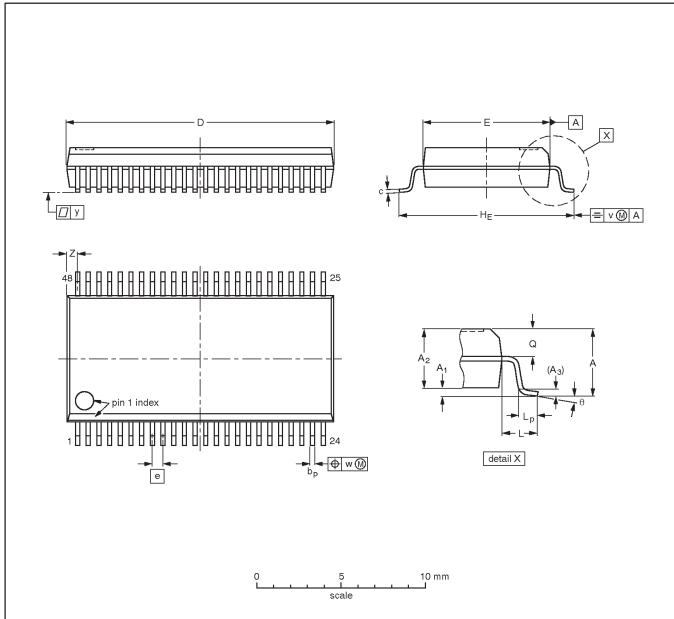
| TEST                               | SWITCH |
|------------------------------------|--------|
| t <sub>PHZ</sub> /t <sub>PZH</sub> | GND    |
| $t_{PLZ}/t_{PZL}$                  | 6 V    |
| t <sub>PLH</sub> /t <sub>PHL</sub> | open   |

#### **DEFINITIONS**

R<sub>L</sub> = Load resistor; see AC CHARACTERISTICS for value.

 $C_L = Load$  capacitance includes jig and probe capacitance; see AC CHARACTERISTICS for value.

| <u>'</u> | IN        | INPUT PULSE REQUIREMENTS |                |                |                |  |  |  |  |
|----------|-----------|--------------------------|----------------|----------------|----------------|--|--|--|--|
| FAMILI   | Amplitude | Rep. Rate                | t <sub>W</sub> | t <sub>R</sub> | t <sub>F</sub> |  |  |  |  |
| 74LVT16  | 2.7 V     | ≤10 MHz                  | 500 ns         | ≤2.5 ns        | ≤2.5 ns        |  |  |  |  |


SW00003

### 3.3 V LVT 16-bit transceiver (3-State)

### 74LVT16245B

SSOP48: plastic shrink small outline package; 48 leads; body width 7.5 mm

SOT370-1

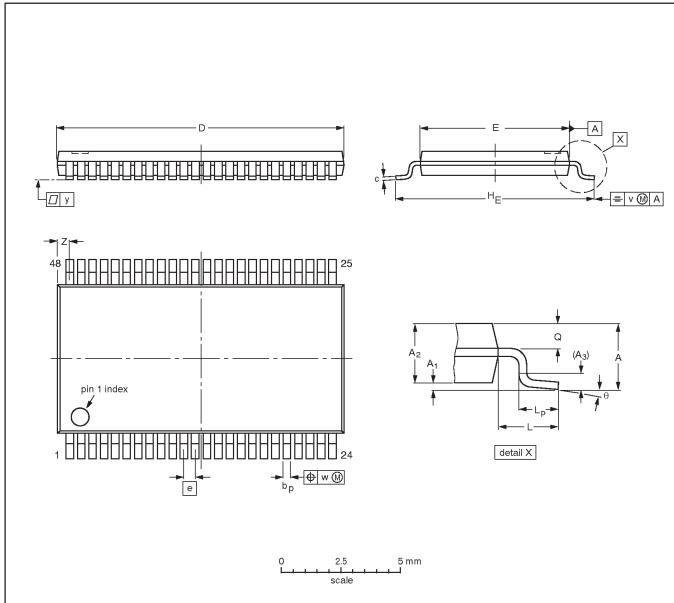


#### **DIMENSIONS (mm are the original dimensions)**

| UNIT | A<br>max. | A <sub>1</sub> | A <sub>2</sub> | A <sub>3</sub> | bp         | С            | D <sup>(1)</sup> | E <sup>(1)</sup> | е     | HE           | L   | Lp         | Q          | v    | w    | у   | Z <sup>(1)</sup> | θ        |
|------|-----------|----------------|----------------|----------------|------------|--------------|------------------|------------------|-------|--------------|-----|------------|------------|------|------|-----|------------------|----------|
| mm   | 2.8       | 0.4<br>0.2     | 2.35<br>2.20   | 0.25           | 0.3<br>0.2 | 0.22<br>0.13 | 16.00<br>15.75   | 7.6<br>7.4       | 0.635 | 10.4<br>10.1 | 1.4 | 1.0<br>0.6 | 1.2<br>1.0 | 0.25 | 0.18 | 0.1 | 0.85<br>0.40     | 8°<br>0° |

#### Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


| OUTLINE  |     | REFER  | EUROPEAN | ISSUE DATE |            |                                   |
|----------|-----|--------|----------|------------|------------|-----------------------------------|
| VERSION  | IEC | JEDEC  | EIAJ     |            | PROJECTION | ISSUE DATE                        |
| SOT370-1 |     | MO-118 |          |            |            | <del>-95-02-04-</del><br>99-12-27 |

### 3.3 V LVT 16-bit transceiver (3-State)

### 74LVT16245B

TSSOP48: plastic thin shrink small outline package; 48 leads; body width 6.1 mm

SOT362-1



#### DIMENSIONS (mm are the original dimensions).

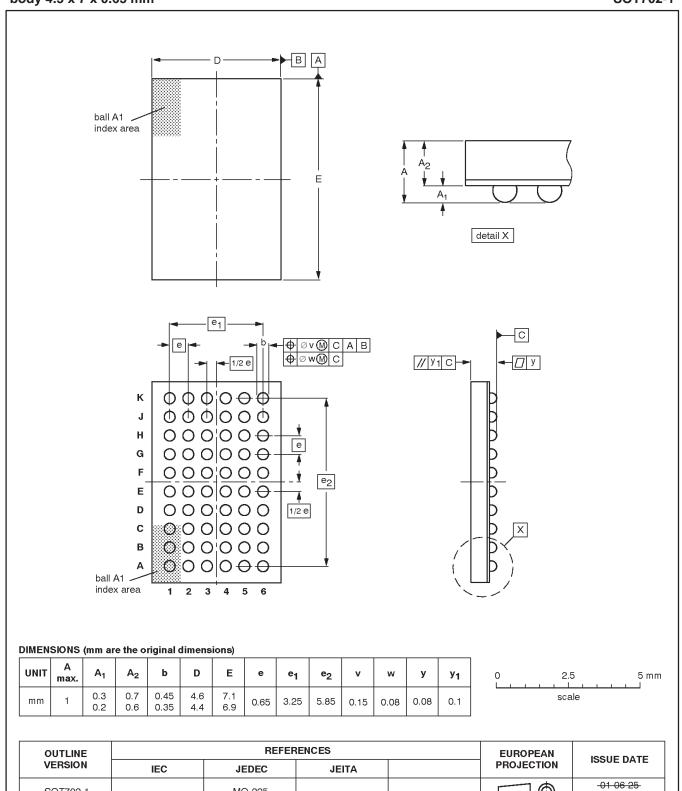
| UNIT | A<br>max. | Α1           | A <sub>2</sub> | А3   | bp           | c          | D <sup>(1)</sup> | E <sup>(2)</sup> | е   | HE         | L | Lp         | Q            | ٧    | w    | у   | z          | θ        |
|------|-----------|--------------|----------------|------|--------------|------------|------------------|------------------|-----|------------|---|------------|--------------|------|------|-----|------------|----------|
| mm   | 1.2       | 0.15<br>0.05 | 1.05<br>0.85   | 0.25 | 0.28<br>0.17 | 0.2<br>0.1 | 12.6<br>12.4     | 6.2<br>6.0       | 0.5 | 8.3<br>7.9 | 1 | 0.8<br>0.4 | 0.50<br>0.35 | 0.25 | 0.08 | 0.1 | 0.8<br>0.4 | 8°<br>0° |

#### Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

| OUTLINE  |     | REFER  | EUROPEAN | ISSUE DATE |            |                                   |  |
|----------|-----|--------|----------|------------|------------|-----------------------------------|--|
| VERSION  | IEC | JEDEC  | EIAJ     |            | PROJECTION | ISSUE DATE                        |  |
| SOT362-1 |     | MO-153 |          |            |            | <del>-95-02-10-</del><br>99-12-27 |  |

### 3.3 V LVT 16-bit transceiver (3-State)


#### 74LVT16245B

 $\odot$ 

02-08-08

VFBGA56: plastic very thin fine-pitch ball grid array package; 56 balls; body 4.5 x 7 x 0.65 mm

SOT702-1



2002 Oct 31 11

MO-225

SOT702-1

### 3.3 V LVT 16-bit transceiver (3-State)

74LVT16245B

#### **REVISION HISTORY**

| Rev | Date     | Description                                                                              |  |  |  |
|-----|----------|------------------------------------------------------------------------------------------|--|--|--|
| _3  | 20021031 | Product data (9397 750 09135); supersedes 74LVT16245B_2 of 1998 Feb 19 (9397 750 03552). |  |  |  |
|     |          | Engineering Change Notice 853–1753 27400 (date: 20011203).                               |  |  |  |
|     |          | Modifications:                                                                           |  |  |  |
|     |          | Add VFBGA56 (EV) package option.                                                         |  |  |  |

#### **Data sheet status**

| Level | Data sheet status <sup>[1]</sup> | Product<br>status <sup>[2]</sup> [3] | Definitions                                                                                                                                                                                                                                                                                    |
|-------|----------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I     | Objective data                   | Development                          | This data sheet contains data from the objective specification for product development.  Philips Semiconductors reserves the right to change the specification in any manner without notice.                                                                                                   |
| II    | Preliminary data                 | Qualification                        | This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.             |
| III   | Product data                     | Production                           | This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). |

<sup>[1]</sup> Please consult the most recently issued data sheet before initiating or completing a design.

#### **Definitions**

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

#### **Disclaimers**

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products—including circuits, standard cells, and/or software—described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

#### **Contact information**

For additional information please visit

http://www.semiconductors.philips.com. Fax: +31 40 27 24825

For sales offices addresses send e-mail to:

sales.addresses@www.semiconductors.philips.com

© Koninklijke Philips Electronics N.V. 2002 All rights reserved. Printed in U.S.A.

Date of release: 10-02

Document order number: 9397 750 09135

Let's make things better.

Philips Semiconductors





<sup>[2]</sup> The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

<sup>[3]</sup> For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.